6,842 research outputs found

    Three-dimensional matter-wave vortices in optical lattices

    Full text link
    We predict the existence of spatially localized nontrivial vortex states of a Bose-Einstein condensate with repulsive atomic interaction confined by a three-dimensional optical lattice. Such vortex-like structures include planar vortices, their co- and counter-rotating bound states, and distinctly three-dimensional non-planar vortex states. We demonstrate numerically that many of these vortex structures are remarkably robust, and therefore can be generated and observed in experiment.Comment: 4 pages, 6 figure

    The discovery of population differences in network community structure: New methods and applications to brain functional networks in schizophrenia

    Get PDF
    The modular organization of the brain network can vary in two fundamental ways. The amount of interversus intra-modular connections between network nodes can be altered, or the community structure itself can be perturbed, in terms of which nodes belong to which modules (or communities). Alterations have previously been reported in modularity, which is a function of the proportion of intra-modular edges over all modules in the network. For example, we have reported that modularity is decreased in functional brain networks in schizophrenia: There are proportionally more inter-modular edges and fewer intra-modular edges. However, despite numerous and increasing studies of brain modular organization, it is not known how to test for differences in the community structure, i.e., the assignment of regional nodes to specific modules. Here, we introduce a method based on the normalized mutual information between pairs of modular networks to show that the community structure of the brain network is significantly altered in schizophrenia, using resting-state fMRI in 19 participants with childhood-onset schizophrenia and 20 healthy participants. We also develop tools to show which specific nodes (or brain regions) have significantly different modular communities between groups, a subset that includes right insular and perisylvian cortical regions. The methods that we propose are broadly applicable to other experimental contexts, both in neuroimaging and other areas of network science

    One-loop chiral amplitudes of Moller scattering process

    Full text link
    The high energy amplitudes of the large angles Moller scattering are calculated in frame of chiral basis in Born and 1-loop QED level. Taking into account as well the contribution from emission of soft real photons the compact relations free from infrared divergences are obtained. The expressions for separate chiral amplitudes contribution to the cross section are in agreement with renormalization group predictions.Comment: 15 pages, 3 figure

    Epidermal mammalian target of rapamycin complex 2 controls lipid synthesis and filaggrin processing in epidermal barrier formation

    Get PDF
    Background: Perturbation of epidermal barrier formation will profoundly compromise overall skin function, leading to a dry and scaly, ichthyosis-like skin phenotype that is the hallmark of a broad range of skin diseases, including ichthyosis, atopic dermatitis, and a multitude of clinical eczema variants. An overarching molecular mechanism that orchestrates the multitude of factors controlling epidermal barrier formation and homeostasis remains to be elucidated. Objective: Here we highlight a specific role of mammalian target of rapamycin complex 2 (mTORC2) signaling in epidermal barrier formation. Methods: Epidermal mTORC2 signaling was specifically disrupted by deleting rapamycin-insensitive companion of target of rapamycin (Rictor), encoding an essential subunit of mTORC2 in mouse epidermis (epidermis-specific homozygous Rictor deletion [Ric(EKO)] mice). Epidermal structure and barrier function were investigated through a combination of gene expression, biochemical, morphological and functional analysis in Ric(EKO) and control mice. Results: Ric(EKO) newborns displayed an ichthyosis-like phenotype characterized by dysregulated epidermal de novo lipid synthesis, altered lipid lamellae structure, and aberrant filaggrin (FLG) processing. Despite a compensatory transcriptional epidermal repair response, the protective epidermal function was impaired in Ric(EKO) mice, as revealed by increased transepidermal water loss, enhanced corneocyte fragility, decreased dendritic epidermal T cells, and an exaggerated percutaneous immune response. Restoration of Akt-Ser473 phosphorylation in mTORC2-deficient keratinocytes through expression of constitutive Akt rescued FLG processing. Conclusion: Our findings reveal a critical metabolic signaling relay of barrier formation in which epidermal mTORC2 activity controls FLG processing and de novo epidermal lipid synthesis during cornification. Our findings provide novel mechanistic insights into epidermal barrier formation and could open up new therapeutic opportunities to restore defective epidermal barrier conditions.Peer reviewe

    Brain charts for the human lifespan

    Get PDF
    Over the past few decades, neuroimaging has become a ubiquitous tool in basic research and clinical studies of the human brain. However, no reference standards currently exist to quantify individual diferences in neuroimaging metrics over time, in contrast to growth charts for anthropometric traits such as height and weight1 . Here we assemble an interactive open resource to benchmark brain morphology derived from any current or future sample of MRI data (http://www.brainchart.io/). With the goal of basing these reference charts on the largest and most inclusive dataset available, acknowledging limitations due to known biases of MRI studies relative to the diversity of the global population, we aggregated 123,984 MRI scans, across more than 100 primary studies, from 101,457 human participants between 115 days post-conception to 100 years of age. MRI metrics were quantifed by centile scores, relative to non-linear trajectories2 of brain structural changes, and rates of change, over the lifespan. Brain charts identifed previously unreported neurodevelo pmental milestones3 , showed high stability of individuals across longitudinal assessments, and demonstrated robustness to technical and methodological diferences between primary studies. Centile scores showed increased heritability compared with non-centiled MRI phenotypes, and provided a standardized measure of atypical brain structure that revealed patterns of neuroanatomical variation across neurological and psychiatric disorders. In summary, brain charts are an essential step towards robust quantifcation of individual variation benchmarked to normative trajectories in multiple, commonly used neuroimaging phenotypes

    The development and application of a new tool to assess the adequacy of the content and timing of antenatal care

    Get PDF
    Abstract Background: Current measures of antenatal care use are limited to initiation of care and number of visits. This study aimed to describe the development and application of a tool to assess the adequacy of the content and timing of antenatal care. Methods: The Content and Timing of care in Pregnancy (CTP) tool was developed based on clinical relevance for ongoing antenatal care and recommendations in national and international guidelines. The tool reflects minimal care recommended in every pregnancy, regardless of parity or risk status. CTP measures timing of initiation of care, content of care (number of blood pressure readings, blood tests and ultrasound scans) and whether the interventions were received at an appropriate time. Antenatal care trajectories for 333 pregnant women were then described using a standard tool (the APNCU index), that measures the quantity of care only, and the new CTP tool. Both tools categorise care into 4 categories, from ‘Inadequate’ (both tools) to ‘Adequate plus’ (APNCU) or ‘Appropriate’ (CTP). Participants recorded the timing and content of their antenatal care prospectively using diaries. Analysis included an examination of similarities and differences in categorisation of care episodes between the tools. Results: According to the CTP tool, the care trajectory of 10,2% of the women was classified as inadequate, 8,4% as intermediate, 36% as sufficient and 45,3% as appropriate. The assessment of quality of care differed significantly between the two tools. Seventeen care trajectories classified as ‘Adequate’ or ‘Adequate plus’ by the APNCU were deemed ‘Inadequate’ by the CTP. This suggests that, despite a high number of visits, these women did not receive the minimal recommended content and timing of care. Conclusions: The CTP tool provides a more detailed assessment of the adequacy of antenatal care than the current standard index. However, guidelines for the content of antenatal care vary, and the tool does not at the moment grade over-use of interventions as ‘Inappropriate’. Further work needs to be done to refine the content items prior to larger scale testing of the impact of the new measure

    On the role of the magnetic dipolar interaction in cold and ultracold collisions: Numerical and analytical results for NH(3Σ^3\Sigma^-) + NH(3Σ^3\Sigma^-)

    Full text link
    We present a detailed analysis of the role of the magnetic dipole-dipole interaction in cold and ultracold collisions. We focus on collisions between magnetically trapped NH molecules, but the theory is general for any two paramagnetic species for which the electronic spin and its space-fixed projection are (approximately) good quantum numbers. It is shown that dipolar spin relaxation is directly associated with magnetic-dipole induced avoided crossings that occur between different adiabatic potential curves. For a given collision energy and magnetic field strength, the cross-section contributions from different scattering channels depend strongly on whether or not the corresponding avoided crossings are energetically accessible. We find that the crossings become lower in energy as the magnetic field decreases, so that higher partial-wave scattering becomes increasingly important \textit{below} a certain magnetic field strength. In addition, we derive analytical cross-section expressions for dipolar spin relaxation based on the Born approximation and distorted-wave Born approximation. The validity regions of these analytical expressions are determined by comparison with the NH + NH cross sections obtained from full coupled-channel calculations. We find that the Born approximation is accurate over a wide range of energies and field strengths, but breaks down at high energies and high magnetic fields. The analytical distorted-wave Born approximation gives more accurate results in the case of s-wave scattering, but shows some significant discrepancies for the higher partial-wave channels. We thus conclude that the Born approximation gives generally more meaningful results than the distorted-wave Born approximation at the collision energies and fields considered in this work.Comment: Accepted by Eur. Phys. J. D for publication in Special Issue on Cold Quantum Matter - Achievements and Prospects (2011

    Exponential Random Graph Modeling for Complex Brain Networks

    Get PDF
    Exponential random graph models (ERGMs), also known as p* models, have been utilized extensively in the social science literature to study complex networks and how their global structure depends on underlying structural components. However, the literature on their use in biological networks (especially brain networks) has remained sparse. Descriptive models based on a specific feature of the graph (clustering coefficient, degree distribution, etc.) have dominated connectivity research in neuroscience. Corresponding generative models have been developed to reproduce one of these features. However, the complexity inherent in whole-brain network data necessitates the development and use of tools that allow the systematic exploration of several features simultaneously and how they interact to form the global network architecture. ERGMs provide a statistically principled approach to the assessment of how a set of interacting local brain network features gives rise to the global structure. We illustrate the utility of ERGMs for modeling, analyzing, and simulating complex whole-brain networks with network data from normal subjects. We also provide a foundation for the selection of important local features through the implementation and assessment of three selection approaches: a traditional p-value based backward selection approach, an information criterion approach (AIC), and a graphical goodness of fit (GOF) approach. The graphical GOF approach serves as the best method given the scientific interest in being able to capture and reproduce the structure of fitted brain networks

    The Single-Particle density of States, Bound States, Phase-Shift Flip, and a Resonance in the Presence of an Aharonov-Bohm Potential

    Full text link
    Both the nonrelativistic scattering and the spectrum in the presence of the Aharonov-Bohm potential are analyzed. The single-particle density of states (DOS) for different self-adjoint extensions is calculated. The DOS provides a link between different physical quantities and is a natural starting point for their calculation. The consequences of an asymmetry of the S matrix for the generic self-adjoint extension are examined. I. Introduction II. Impenetrable flux tube and the density of states III. Penetrable flux tube and self-adjoint extensions IV. The S matrix and scattering cross sections V. The Krein-Friedel formula and the resonance VI. Regularization VII. The R --> 0 limit and the interpretation of self-adjoint extensions VIII. Energy calculations IX. The Hall effect in the dilute vortex limit X. Persistent current of free electrons in the plane pierced by a flux tube XI. The 2nd virial coefficient of nonrelativistic interacting anyons XII. Discussion of the results and open questionsComment: 68 pages, plain latex, 7 figures, 3 references and one figure added plus a few minor text correction
    corecore